CHILLER

Microcanal

Baja Carga de Fluido Refrigerante Natural

Microcanal

Propano | R-290

Baja Carga de Fluido Refrigerante Natural

CARACTERÍSTICAS TÉCNICAS

- Condensador microcanal de aluminio
- Tuberías en acero al carbono, con alta durabilidad
- Evaporador a placas soldadas
- Dos compresores del tipo alternativo semihermético
- Dos circuitos de refrigeración independientes
- · Sistema con expansión seca en el evaporador
- Refrigeración por agua o solución
- Panel de control micro-procesado
- Sistema electrónico de seguridad para fluidos refrigerantes Inflamables
- Motores, válvulas, sensores y componentes eléctricos específicos para propano

DIFERENCIALES

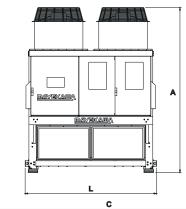
- De simple instalación, funcionamiento y mantenimiento
- Equipo tipo PLUG & PLAY
- Baja frecuencia de mantenimiento
- Condensación por aire (no es necesario utilizar torres Enfriamiento)
- Baja carga de fluido refrigerante
- Filtración del aire de condensación a través de pantallas laterales desmontables y lavables, lo que garantiza una mayor circulación del aire y un fácil acceso para el mantenimiento.
- Baio nivel de ruido
- Diseñado para aplicaciones comerciales con ingeniería industrial
- Variador de frecuencia en los motores de los compresores
- Rango de control del 25% al 100% de la capacidad total Ventiladores con control de rotación
- · Alto desempeño COP y IPLV

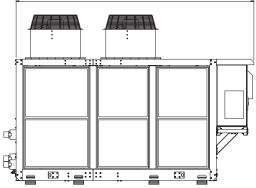
TECNOLOGÍA MAYEKAWA: MICROCANAL

- Hasta un 50% de reducción de la carga de fluido refrigerante
- · Operación a alta temperatura ambiente
- Reducción del peso final del equipo
- Alta eficiencia en relación a otros tipos de condensadores

FLUIDO REFRIGERANTE NATURAL

• R-290 Propano: ODP = 0 e GWP = 3


OPCIONALES


- Pintura para orla marítima
- Bomba primária

ÁREAS DE APLICACIÓN

- Bebidas/Lácteos / Alimentos Ar condicionado/ Plástico
- Química/Petroquímica
- Borracha/ Automotivo
- Farmacêutica/ Hospitalar
- Entre outros

DIMENSIONES

TABLA DE CAPACIDADES

Modelo	Capacidad Nominal				IDIV	COD	Flujo de agua de Processo		Cantidade de Fluido	Dimensiones			Peso
	60 Hz		50 Hz		IPLV	СОР	60 Hz	50 Hz	Refrigerante	С	L	Α	
	TR	kW	TR	kW			m³/h	m³/h	kg	mm	mm	mm	kg
URA-P50	50	176	42	147	4,4	3,3	30	25	12	4.000	2.200	2.800	3.100
URA-P75	75	263	63	221	4,2	3,4	45	38	20	4.600	2.200	2.800	4.000
URA-P100	100	351	84	295	4,4	3,4	60	51	31	6.000	2.200	2.800	4.900

Tabla basada en las condiciones: temperatura de retorno del proceso: 12 °C; temperatura de salida: 7 °C - temperatura ambiente: 30 °C. Cálculo del IPLV según la norma AHRI estándar 551/591 (SI) a 60 Hz.

Condiciones de diseño diferentes a las de la tabla bajo consulta